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digits but earning a decreasing amount for each correct prediction as 
the number increases. <(■£) The period of the emitted sequence being 
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ABSTRACT 

In this paper several infinite two-person games are studied, 

all having the following coamon structure:    Player 1 (Emitter) pro- 

duces a binary periodic sequence.    Player 2 (Predictor) observes 

some initial segment of this sequence and then tries to predict the 

next digit.    The payoff to Emitter is zero if the prediction is a 

correct one.    The games differ in additional assumptions—those 

are in particular:    (1)    Predictor required to make his prediction 

after observing a prescribed number of digits of the sequence. 

(2)    Predictor allowed to observe any number of digits but earning 

a decreasing amount for each correct prediction as the number 

increases.     (3)    The period of the emitted sequence being chosen 

by random from some fi> »d distribution.     (4)    Emitter allowed to 

choose the period but being paid a decreasing amount for Incorrect 

prediction as the period increases.    Combining these assumptions 

two zero-sum and two nonzero-sum games are obtained.    It is shown 

that all these games possess a solution, some are at least partially 

solved and their further properties investigated. 
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1. INTRODUCTION. 

In this paper we study certain types of infinite games which 

belong to the class of discrete emission-prediction games, also 

known as discrete gases of aiming and evasion. An emission-pre- 

diction game is a two-person game, where the first player, to be 

named Emitter, produces a sequence of elements from some fixed 

finite set A. The second player, to be named Predictor, is allowed 

to observe the sequence for some time and is then required to make 

a prediction of some kind about the future behavior of the sequence. 

The general Predictor's goal is to make a correct prediction, while 

Emitter wants to avoid this. 

Emission-prediction games may serve as models for a variety 

of conflict situations. For instance. Emitter could be identified 

as an attacker (bomber, submarine, guided missile, guerilla 

unit) performing a series of evasive maneuvers, which,in the dis- 

crete tlaw, represent the sequence being emitted. Predictor is 

trying to destroy the attacker. Since, in general, the attacker 

can be intercepted only after one or more time units have elapsed 

from the last observed maneuver (or position), Predictor must be 

able to correctly predict future maneuvers (positions) of the 

attacker. 

To our best knowledge the study of emission-prediction games 

was initiated by Isaacs (the "bomber and battleship" problem 

and have since been investigated by Dubins [2], Isaacs and Karlln [5], 

/: 



Isaacs [A], Karlin [6], Blackwell [1], Ferguson [3] and Matula [7]. 

The assumptions made by these authors can be summarized as follows: 

(1) No restriction is placed upon the emitted sequence. 

(2) Predictor is allowed to observe the sequence as long as he 

wishes before he decides to make a prediction concerning 

several subsequent terms of the sequence. 

(3) The game is a zero-sum game with the payoff depending only 

on the discrepancy between the prediction and the actual 

values. 

The emission-prediction games investigated in this paper 

differ mainly in one crucial aspect; we assume that the emitted 

sequence is a periodic one. Apart from this being of interest per 

se we have been motivated by the following idea. Suppose that the 

attacker is a simple automatic device with built-in preprogrammed 

ability to perform evasive maneuvers. The trajectory of this 

device will then follow a periodic pattern with some period depend- 

ing upon the complexity of the program and unknown to Predictor— 

the defender. Even in situations where the attacker is controlled 

by a human operator periodicity may very well serve as a first 

approximation. We believe that most humans do exhibit a kind of 

cyclic pattern when asked to perform a series of evasive, i.e. 

unpredictable maneuvers. 

Assuming periodicity of the emitted sequence, however, 

compels us to place some additional restrictions on Emitter and/or 
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Predictor since otherwise the game would not possess a solution. 

The additional restrictions considered In this paper are: the 

period Is chosen by an independent chance mechanism, bounds on the 

length of observation intervals, and penalties for long periods and 

lengthy observation. As for the type of prediction required we 

limited outselves to the simplest case of predicting the next term 

of the sequence.  (With the periodicity assumptions this is by no 

means trivial as it would be without it.) For the sake of simpli- 

city of notation we consider binary sequences only; most of the 

results of this paper extend easily to the m-ary case. 

Another possible application of the model may be that of 

an optimum jamming strategy for a missile defense system. Suppose 

that a ship is being attacked by a missile equipped with a target 

search radar. To avoid detection the search radar is not active 

all the time but rather is constantly being switched on and off in 

some programmed pattern. The intensity of illumination of the tar- 

get by the search radar then follows a binary periodic sequence 

(in a discrete time). The defender of the target (ship) wants to 

Jam the search radar. The Jamming device, however, must not be 

transmitting all the tine since the missile could then home on the 

transmitter and hence the target. Thus, the defender faces the 

problem of predicting the next mode of operation of the search 

radar after observing the illumination pattern for some limited 

time, i.e., predicting next term of the binary sequence. 

■ j-'*m 
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2. PRELIMINARIES. 

Throughout this paper the symbol A will denote the two- 

element set A - {0,1} and the symbol fl with generic elements 

u will denote the set of all periodic sequences of zeros and ones. 

We say that a binary sequence 

a) « OD., ,(i)0,...) ; u) € A; nal,2,...; 
i 4       n 

Is periodic with the period    Tr(w) ■ t;    t « 1,2,...,    if 

wn+kt " w      ^or evt'ry   n-1,2,...;    k - 1,2  

Obviously, each periodic sequence w 6 ß has only one period, and 

we denote 

flt - U € fl : nCw) - t) 

so that Q Is a disjoint union of ß..,n2,... . 

If a) € ß and n * 1,2,... then u  will denote the 
* * n 

n-th term and u|  the ordered n-tuple of the first n terms 

of the sequence u. 

Let A  be the set of all ordered n-tuples of zeros and 

ones. If a "> (a.,... ,a ) € A  and 3 € A then aß is the 
l     n 

ordered (n+1)-tuple (a.,...,a ,6) and (a)  is the periodic 

sequence 

u) ■ (a. ,... ,a »a.,...,a ,...). Clearly, ir((a) ) & n. 
1     n 1    n 



For every a € A  and t a 1,2»... we define the function 

itM - { 
1    if there ia   w € Q^    such that    w - (a)  , 

(1) 
otherwise, 

and the function 

X(a> - «in{t - 1,2,... : It(a) - 1}. (2) 

Thus I (a) serves as an indicator of "potential periods" of a 

and X(a) ia the "smallest potential period" of a. 

Later we will need the following lemma. 

Lemma 2.1: For every a € A  there exists a 6 A such that 

X(aa) > 

number x. 

+ 1, where [x] denotes the integral part of the 

Proof: For any n-tuple a • (o, ,...,<* ) denote 
~~~~-~' in 

T(a) - {t - l,...,nr-l : It(a) - 1}    if    n > 1 

and   T(a) - 0    if    n - 1.    Notice first that 

T(aO> fl T(al) - 0 

and (3) 

T(aO)  U T(al) - T(a)  U {n>. 

This follows by realizing that if t € T(a) then a ■ (a1>.i.,a ; 

o1,...,o ^..»^.»....o.), 1 a; i as t so that t € T(aa.+1) 

; 
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if 1 < t and t € TCac^) if 1 ■ t. Convarscly, if t € T(ao  ) 

and t < n then t € T(a) and dearly t < T(ao) for o j* o.... 

Finally, n € T(aa) If and only If a f* a.. 

Let now a ■ (o.,... ,o ) and assume n > 2 since the 
i    ,n ,  n 

lemma, is trivial for n - 1,2. If T(a) - 0 then by (3) T(aO) 

U T(al) ■ (n) so that A(aa) k n for any a € A. 

If T(a) i*0 then there is b - (ß,,.1..,^) and 

c ■ (Yif..»»Y.) such that 
: I ■        i 

i 

'  1  '   ' | 

a • (be be ... be b) and T(be) - 0. 

m times 
1 I ; 

If T(b) - 0 then T(a) - {k + £} and by (3) X(ao) i n for some 

a € A. 
i • ■ i 

If T(b) +  0 then there is e - (e1fc...,e ) and d - (6.»...,6 ) 
t i 

! ' ' 
such that 

I 

l i 

b - (ed ed ... ed e) and T(ed) ■ 0. 

Henee taking    £l ^ £i  " ^i    we have 

A(aa) it m(fcft) + r + sik+i + i-n-k+2 

and since 2k < n - 1 we obtain 

A(aa) i^+ 2 > 

i 

/ 

+ 1. The lemma is proved. 
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3. ZERO-SUM GAMES WITH RANDOM PERIOD. 

In this section we consider the case where 

(1) the period t of Emitter's sequence Is chosen randomly 

according to some distribution v known to both players, 

(2) Predictor Is allowed to observe the first n digits of 

the Emitter's sequence and tries to predict the next 

(n+l)st digit, 

(3) the payoff to Emitter Is zero If the prediction Is correct 

and one otherwise. 

In other words, the expected payoff Is the probability of 

wrong prediction, which the Emitter Is trying to maximize and the 

Predictor to minimize. 

We will denote the resulting zero-sum game by G(v,n), 

where v(t), t ■ 1,2,... Is the period distribution, 

v(t) i 0, t - 1,2,... ;   I    v(t) - 1 
t-1 

and n "■ 1,2,... Is the length of the sequence observed by the 

Predictor. 

Next we describe Emitter's and Predictor's pure strategies. 

To specify a pure strategy Emitter must choose for every 

t ■ 1,2,... a binary sequence with the period t. Emitter's pure 

strategies s are therefore sequences 

{s , t ■ 1,2,...}, where s € ß^. 
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The set S of all Emitter's pure strategies Is then an Infinite 

Cartesian product S - ft. x ß. x ... of finite sets and Is 

therefore uncountable. 

Predictor's pure strategies ^ are simpler to describe. 

Each 4» Is a mapping of A  Into A ■ {0,1}. For each a € A , 

♦ (a) Is the prediction of the (nrfl)st term of the Emitter's 

sequence If the first n terms observed are the n-tuple a. The 

set ♦ of all Predictor's pure strategies Is therefore a finite 

2n set of 2  elements. 

The payoff function W(s,t)  Is then ^Iven by 

W(s,*) - I    v(t) Wfs,*) ; s t S. ♦ 6 ♦, 
t-1     c 

where for t - 1,2,... and w ■ s , 

(1 If «(wl11) t  ü.iri.1, 

0 If ♦((J)|
n) - u) ... 

nfl 

It Is easy to see that W (s,^) Is nothing but conditional proba- 

bility of wrong pi diction given that the period Is t and hence 

W(s,^)  Is the unconditional error probability. 

The game G(v,n)  is now formally defined by the triplet 

(S,*,W). This Is an Infinite zero-sum game, however, since the set 

4 Is finite and the layoff function Is nonnegative and boundeJ by 

one we have by the well-known theorem of Wald [8] the following 

proposition. 



Proposition 3.1: The game G(v,n) has a value and Predictor has 

an optimal strategy. 

Let us turn our attention to the existence of Emitter's 

optimal strategy. By another Wald's theorem ([8], Theorem 2.20) 

an optimal strategy exists If the corresponding space of pure strate- 

gies Is totally bounded with respect to the Intrinsic metric 

([8], sec. 2.1). Now the space S of Emitter's pure strategies 

Is totally bounded In the above sense If for every e > 0 there 

exists a finite subset S  of S such that for every s 6 S 

there Is an r 6 S  for which e 

max|w(s^) - W(rf*)|  < e. 

It Is easy to see that this condition Is satisfied for the game 

G(v,n);    take an Integer    T    such that      J    v(t) < e    and define 
t>T 

S  to be the set of all pure strategies s - {s . t ■ 1,2»...} 
e t 

with s  fixed for t > T. Thus we have proved the following 

proposition. 

Proposition 3.2; In the game G(v,n) Emitter has also an optimal 

strategy. 

In general, optimal strategies will be mixed strategies, 

that Is probability distributions on the corresponding spaces of 

pure strategies. 

Let X be the space of Emitter's mixed strategies. Since 

S Is a product space a mixed strategy x € X will be a product 

probability measure 
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x ■ ». x x2 x ... , 

where x  Is a probability distribution on the finite set ß . 

In other words, x 6 X is completely specified by *  sequence of 

probability distributions x ; t ■ 1,2,... . The payoff function 

W then extends onto X * ♦ by 

W(x^) - j WCs.^dxCs) - j [ v(t)Wt(s^)dx(s) 

S        s tml 

- I   v(t) I W (s,*)dx(s) - I    v(t) I    W (s^)x.(sj. 
t-l    ^ ' t-1   st€öt 

Predictor's mixed strategies y € Y are again probability 

distributions on the finite set ♦. Thus for every such y and 

s € S we can define 

W(s.y) - I   W(s^)yU) - [ v(t) I   W (s^)y(*). 
♦€♦ t-1    ♦€♦ 

Let y € Y and let for every a € An, a €{0,1} f (a) - I  y(*) 
a    U:^(a)-a) 

Clearly, f (a) is the probability of predicting  a if the • *  a 

n-tuple a has been observed and if Predictor uses the mixed 

strategy y. Thus f - (f.,f.) could be called Predictor's 

behavioral strategy and we have for w ■ s 
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W (s.f) - I   W («^yW - { 
fo^n) if Vi-1' 

(4) 

if u)., - 0. 
tH-1 

and Conversely, If f = (f0,f.) where f  maps A  Into [0,1] 

f0(a) + f1(a) - 1 for all a € An then 

y(*) -   I  f0(a)  +   I  f^a) ,    ♦ € ♦, 

{a€An:^(a)-0}  {a€An:*(a)-l} 

Is a mixed strategy and (A) holds. Hence we can work with the set 

F of Predictor's behavioral strategies instead of with the set Y. 

Proposition 3.3: The value v of G(v(n) is given by 

v - min [ v(t) maxn max{I.(aO)f1(a).I (al)fn(a)}     (5) 
f€F t-1    a€A     c    x   c    u 

* 
and f  is Predictor's optimal strategy if and only if It minimizes 

the series above. 

Proof: Since G(v,n) has a value we must have v ■ min sup U(s»f). 
f€F s€S 

Now 

sup W(s,f) - I    v(t) max Wt(s,f) , 
s€s     t-i   st€nt 

and by (A) 

max W (s,f) - max{f  (a)}, 
st€flt 
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where the latter maximum is taken over the set of all (n-H)-tuples 

aa € A   for which w|   ■ aa for some w € fl . i.e. for 

which I (aa) • 1. Hence 

max W (s,f) - max max{I (aO)^ (a),I (al)fn(a)} 
8t€flt 

Z a€An    t   i   t   u 

and the second assertion follows from the existence of Predictor's 

optimal strategy. 

Setting f (a) ■ ("ö»"?) for each a € A  in (5) we obtain 

Corollary; 0 < v £ -r 

* 
Proposition 3.4;    There exists     Predictor's optimal strategy    f 

such that for each    a € An    either    f (a) - (1,0)    or    f (a) - (0,1) 

or    f*(a) - (|i). 

Proof; Let for every t - 1 n+2 and a € A 

B(t.a) - {f^  ; f0(a) - maxn max{It.(aO)f1(a) ,It(al)f0(a)}). 
ä€A 

where f^ denotes the vector with 2  components £/)(&)• Clearly, 

B(t,a) is a convex polyhedron contained in the 2 -dimensional 

unit hypercube. Furthermore, the vertices of B(t,a) are vectors 

with components 0 or 1 or 1/2 only. 

Let u ■ ^i»* * * »an+2^ * ai ^ A  an^ ^et 

n+1 
K%>- I vcow + v^)   Z   v(t). 

t-1 t>n+l 
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Mow L  It a linear function of f^ and hence Its minimum over 
u ~TJ 

the convex polyhedron 

ttf2 
B - 0 B(tta ) 

fl 

la attained at one of the vertices of B . Denoting f- the 

vertex at which the minimum la attained ve see that for each a 6 An 

fJJ(a) - 0 or 1/2 or 1. (6) 

Finally, since    I  (ao)  - 1    for    t > n + 1, 

min   [    v(t) maxn max{I  (aO)f1(a),I.(al)fn(a)} 
f    t-1 a€An t 1 t ü 

u€An(iH-2) ^^    uM)       u€An(iH-2)    uM) 

Lu*^0 ^    **«"    u*    minl^aea    Lu(iJJ)' 

It follows from Proposition 3 that fu - (f" »l-fj! ) is an 

optimal strategy which together with (6) terminates the proof. 

Proposition 3.5; Let   J  v(t) > -r. Then v - -r and 
1 , t>nfl      z l 

f(a) - (-r,-?), a € A  la the unique Predictor's optimal strategy. 

* 
Proof: Let f  be an optimal strategy and assume that for some 

a € A , a € {0,1}   f (a) i -r. It follows from the proof of 
a    i. 
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Proposition 3.4 that there must be another optimal strategy with 

f (a) - 0 or 1. Hence assume that f (a) • 1 (otherwise take 

f1-a(a)). Then 

I    v(t) maxn iiiax{I (aO)f*(a).I (al)f*(a)} 
t-1    a€An    t    i    t    o 

k ipaxn max{f1(a).£j(a)} I      v(t) > ± 
a€A     " t>ttfl 

1 *    1 so that v > -r-, which Is a contradiction. Hence f (a) ■ -r for 2 a    2 

all a € An, a € {0,1}. For this f* 

OD 

v - J v(t) |maxn max{I (aO),I. (al)} - | 
t-1    4 a€An    z z * 

since for every t ■ 1,2,... there exists a € An and a 6 {0,1} 

such that I (a ) - 1. 

Proposition 3.6; Let the distribution v be such that 

v((f] + 1) >   I       v(t), (7) 
t>[f]+l 

where [-z]    is the Integral part of -r. Then 

I        v(t) (8) 
t>[f]+l 
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* and the Predictor s behavioral strategy    £      defined by 

X(£a) ^ [f] + 1   m   f*(a) - 0 (9) 

Is an optimal strategy. 

Proof: Let us assume first that n Is odd so that [-r] + 1 » -r-. 

Let e € A  be the n-tuple which has 1 at the (-—^th place 

and zeros elsewhere. Clearly 

It(eO) - 1 If an only If t > 2—, 

and 

It(el) - 1    If axrionly If either    t - ^   or    t > n + 1. 

Hence 

I    v(t) maxn max{I.(aO)f1(a),I. (al)fn(a)} 
t-1 a€An t 1 t 0 

2   I    v(t) max{I (eO)f1(e),I.(el)fn(e)} 
t-1 c x c u 

rnfl 
" vm fn<e> + Mc> I     v<t> + max{f1(e).f0(e)}    I     v(t) 

B^^, t>nfl 

2: I     v(t) by the hypothesis. Thus v i  J v(t). 
. nfl .n+1 
t>-^- c 2 

Next let f  be the strategy (9). Then by Lemma 2.1 
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v *   I    v(t) maxn max{I. (aO)f*(a),Il.(al)f*(a)} 
t-1 a€An c i t u 

- I      v(t) inaxn inax{It(aO)f*(a),It.(al)fJ(a)} 
n+l a€A 

t    2 

- I      v(t). 
* iH-1 

Hence v -  £  v(t) and f  Is an optimal strategy. 

If n is even we begin with e having 1 at the (~fl)st place. 

The rest follows verbatim. 

If the hypothesis of the above proposition is not satisfied 

the game G(v,n) is very difficult to solve. As seen from Propo- 

sition 3.3» this amounts to solving the nonlinear programming 

problem: 

"minimize  7 v(t) max max{I (aO)f.(a),I (al)fn(a)}    (10) 
t-1    a€An    t    1    t    0 

subject to f € F." 

It is true that it can be solved by breaking it into a number of linear 

programming problems as we did in the proof of Proposition 3.A but 

the size of this task is still formidable. A slight simplification» 

however, can be obtained by considering truncated versions of 

G(v,n). 
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T 
Let T • 1,2,..., lee G (v,n) be the game (S,t,W ) 

obtained fron G(v,n) by truncating the distribution v at T, 

that Is setting v(t) ■ 0 for t > T and normalizing to one. 

T   T      T 
Proposition 3.7: Let v , f  and x  be the value and optimal 

i 

strategies respectively of the truncated game G (v,n). Then, as 

T      -T   *   .  T   * 
v -•• v, f -► f  and x -► x , 

*      * 
where v, f  and x  are the value and optimal strategies of 

G(v,n). ' 

Proof i Since v Is a probability distribution and 

|wT(xtf) -W(x,f)| * [ v(t) 
t>T 

T 
W (x,f) converges to W(x,f) uniformly In both f and x, which 

Implies the statement. 

To the end of this section we present a solution of a small game 

G(v,n). 

Example: Let n « 5, v(t) > 0 for t • 1 5 and v(t) • 0 

for t > 5. To compute the right-hand side of (5) we need the 

values of I (ao) for t ■ 1,...,5, a € A , a « 0,1. These 

are given In the first two columns of Table 1. Substituting Into 

(10) we obtain 

i 

i 

i 

i 

i 

i 
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v(l)f1(a1) + v(2)f0(a11) + ^maxU^a^f^a^) .f0(a14)} 

+ v(4)inax{f1(a3),f1(a5).f1(a7),f0(a9),f0(a13)Jf0(a15)} 

+ v(5)max{f1(a.); 1 - 2,....;6} 

+ v(l)f0(a32) + v(2)f1(a22) + v(3)iiiax{£1(a28).f0(a23)ff1(a19)y 

,+ v(4)max{f0(a30).f0(a28).f0(a26)>f1(a24)ff1(a2q).f1(a18)} 

+ v(5)inax{f0'(ai): i - 17 31). (11) 

Looking at the expression (11) as a function of 64 nonnegative 

variables tA**}    constrained to satisfy ^(O + ^i^&±^  ■ 1 we 

see that the only variables that make the mininization difficult 

are those for which both ^Q(0 and fjCO appear in (11). 

Hence it is easy to conclude that the nünimum of (11), the yalue 

v of the game, is equal to the minimum of 
. r 

(v(2)u. + v(3)u2 + v(4)inax{u3.l-u2) + v(4)max{l-ui,i-u2,l-u3>  (12) 

i 

over all u. »u.tU. satisfying 0 < u. £ 1, j ■ 1,?,3. 

The minimum of (12) is found to be the smallest of the four numbers t 

v(4) + v(5), v(3)+v(5). v(2) + v(3) + v(4), |(v(2)+v(3)+v(4)+v(5)). 

Hence, the value v of the game is: 

Case 1; v(4) ^ v(3) and v(4) + v(5) * v(2) + v(3) 

v - v(4) + v(5) 
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Case 2: v(3) * v(4) and v(3) + v(5) as v(2) + v(4) 

v - v(3) + v(5) 

Case 3: v(2) + v(3) + v(A) * v(5) 

v - v(2) + v(3) + v(4) 

Case 4: v(2) + v(3) - v(5) « v(4) < v(3) + v(5) - v(2) 

v - |(v(2)+v(3)+v(4)+v(5)) - j(l-v(l)) 

Predictor's optimal strategies for each of the four cases are given 

In Table 1. 
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4. ZERO-SUM GAMES WITH PENALTY FOR LONG PERIODS. 

We will now relax the restrictions on Emitter and let him 

choose freely the period of the sequence emitted. We will, however 

impose a penalty on Emitter for choosing too large periods. The 

game then proceeds as follows: 

(1) Emitter chooses a period t " 1,2,... and a periodic 

binary sequence with the period t. 

(2) Predictor is allowed to observe the first n digits of that 

sequence and tries to predict the next (iH-l)st digit. 

(3) The payoff to Emitter is zero if the prediction is correct 

and is equal to a nonnegative constant c(t) if the predic- 

tion is wrong and the emitted sequence has period t. 

The sequence c(t), t ■ 1,2,... represents the penalty and we 

assume that for all t ■ 1,2,... 

c(t) * c(t+l) 2 0 (13) 

To avoid the trivial case we assume that c(t) > 0 for at least 

one t. 

The resulting zero-sum game is then specified by the 

sequence (13) and an integer n " 1,2,... . We will denote it by 

G(c(t),n). 

The space S of Emitter's pure strategies s now consists 

of ordered pairs 

s ■ (t,s ) where t - 1,2,... and s € Ü , 

Hence    S    is countably infinite. 
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The space ♦ of Predictor's pure strategies as same as 

same as before. 

The payoff function W(s,t)> s 6 S, 4 € * Is for 

» ■ (t,8t), st - « given by 

c(t)  If ♦(g.!11) i  0)^. 

W(s^) - < (14) 

0  if ♦(ü)|n) - ttnfl. 

Introducing again Predictor's behavioral strategies    f    we have 

now 

rc(t)f0(«|n)   if  vi"1' 
w(s,f) - j 

VcCO^Cwl11)    if   «itfl - 0. 

Since the space    ♦    is finite and by (13)  the payoff function is 

bounded we have 

Proposition 4.1;    The game   G(c(t),n)    has a value and Predictor 

has an optimal strategy. 

This time, however, we can obtain explicit expressions. 

Proposition 4.2;    The value   v    of    G(c(t),n)    is given by 

vmm     c(X(aO))c(X(al)) 

!Sn c(X(a0)) + c<x<al» 
* n 

and the strategy f  defined for all a € A  by 
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f*(a) - s&ssm  (16) t0Ka)      c(X(aO)) + c(X(al)) (lb) 

is Predictor's optimal strategy. 

Remark;    Expressions   zr   are to be interpreted as    0    in (IS) and 

as any number    x,    0 £ x £ 1    in  (16). 

Proof;    Let    f € F. 

sup W(str) -   sup  {c(t) max max[I (al)£n(a),I (aO)£1(a)]) 
8€S        t-1,2,...     a€A     c    u    c    x 

max max{fn(a)  sup  c(t)I (aD.f^a)  sup  c(t)I (aO)} 
a€A     u  t-1,2,...    c    1  t-1,2,... 

From (13) for a - 0,1 

sup  c(t)I (aa) - c(A(aa)) 
t-1,2,...    C 

Hence 

v - min sup W(s,r) - max h(a), 
f€F s€S        a6An 

where 

h(a) - min max f (a)c(X(aa)) . (17) 
f(a) a-0,1 0 

However, h(a) is ea lly recognized to be the value of the two- 

by-two matrix game with the matrix 

r  0     c(X(aO)) 
H(a) - 

lc(X(al)),    0  _ 

so that  (15) and (16) hold and the proposition is proved. 
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Let us now turn our attention to Emitter's strategies. Since 

the space S Is countable, the space X of Emitter's mixed strat- 

egies Is simply the set of all probability distributions on S. 

It is, however, more convenient to define a mixed strategy x € X 

as the pair 

x - U.{wt}), 

where    £ a g.»^»*"    is a probability distribution on positive 

integers and   u     are distributions on finite sets    fi .    Clearly, 

if    s -  (t,s ) € S    and    x € X    then   x(s) - £    ^t^8t^' 

* * * n 
Proposition 4.3;    Let    a    ■  (a.,... ,a ) € A     be such that 

h(a*) - max   h(a), (18) 
a€An 

where    h    is defined by  (17), let for    a - 0,1 

t    - X(a a), 

and 

'to," (h O    €flt 

Then Emitter's mixed strategy    x    ■  u  »lwt})»    where 

fC(t1)[c(t0) + c(t1)]"1 if t - t0, 

c(tO>[c(to> + ^tjf1 if t - t1, 

0 otherwise. 



24 

I if 8t - rt .  t - t , o - 0.1, 
"a 

arbitrary otherwise, 

Is an optimal strategy. 

Proof: Notice first that since by Lemma 2.1 

inax(X(aO),X(al)} > I + 1 
the (iH-l)st digits of the two sequences w ■ r   and w* ■ r 

t0 Cl 
must be different. Let now ♦ € ♦. We have 

W(x ,♦) - I    W(s,*)x (s) - £  c(t0)|*(a ) - « .. | 
s€S c0 nri 

*       * *       cCOcCt.) 
+ V^l*«* > - "^ll a Xll \Clta> '  c(to) * c(tl) - 

v' 

* 
and since this Is true for any ♦ € ♦» x  Is an optimal strategy. 

Remark; The results of this section remain true even If the time 

when Predictor Is required to make a prediction Is allowed to 

depend on the observed sequence In some predetermined fashion. 

For Instance, we may ask Predictor to predict the next digit as 

soon as he observes a certain number k of ones or as soon as 

the number of observed digits reaches some n, whichever occurs 

first. 
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The space 4 of Predictor's pure strategies Is then the 

set of all mappings $    from a finite set B Into {0,1}, where 

the set B Is a finite collection of finite strings of zeros and 

ones with the property that for every binary sequence u € ft 

there Is a string b € B, which Is the Initial segment of u. 

The set B Is determined by the requirement Imposed upon 

the prediction time. For Instance, In the case mentioned above 

the set B will consist of all strings of at most n zeros and ones 

which contain at most k zeros. 

The only modification needed In order to extend the results 

of this section to this more general case Is to replace the set 

A  by the set B. 

Example; Consider the game G(c(t),n) with n ■ 5 and 

j(6-t) If t - 1,...,6. 

If t > 6. 

To solve the game we first compute X(a.a) for each a. 6 A , 

a ■ 0,1. These are In the first two columns of Table 2. Then 

compute cCXCa.cO) for (19) and h(a ) from (17) - see Table 2. 

Hence the value v of the game G(c(t),n) Is v ■ 1.5 

and Predictor's optimal strategy f  as computed from (16) Is In 

the last column of Table 2. Emitter's optimal strategies are com- 

puted from Proposition 4.3. We obtain 
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w*« (Oil)*. (100)*}) - 1. p*({ (01101)*.(10010)*}) - 1 

and arbitrary otherwise. In other words. Emitter should produce 

the sequence 011011011... or 110110110... with probability 

1/4 and the sequence 0110101101... or 1101011010... with 

probability 3/4. 
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5. NONZERO-SUM GAMES. 

In the previous two sections we dealt exclusively with 

zero-sum games. That Is, the payoff to Predictor was always 

assumed to be the negative amount of the payoff to Emitter. 

Let us now modify the game G(c(t),n) of the previous 

section by adding to Its description the assumption: 

(4) The payoff to Predictor Is one If his prediction Is a correct 

one and zero otherwise. 

We obtain a new nonzero-sum game 

G'^O.n) - (S.l.Wj.vy, 

where the strategy spaces S,t and Emitter's payoff function W. 

are same as In the zero-sum game (G(c(t),n). TIRO Predictor's 

payoff function W. Is defined by 

/I If ♦((J)|
n) - ^r&v 

W2(s,*) - < 

lo if ♦(ü)|n) * ttttfl, 

where u Is the sequence s . 

Proposition 5.1; The nonzero-sum game G'CcCO.n) has an equlll- 

brium point (x ,f ), where f  Is defined by (16) and x  Is 

*    *    , 
defined as In Proposition 4.3 with the exception that £  ■ C,. ■ 1/2. 

c0   Cl 
Furthermore, all equilibrium points are equivalent and Interchangeable 



28 

yielding the minimax payoffs v and 1/2 Co Emitter and Predictor 

respectively. 

Proof: Let a  be defined by (18). Then for all f € F by the 
* 

definition of x 

so that trivially 

sup W (x*,f) - W9(x*.f*) - |. 
f€F ^        Z        ^ 

* 
Since f  is a minimax strategy in G(c(t),n) 

W1(s,f*) < v 

for any s € S. 
*      * 

Now by the definition of x  and f 

**       * * *        * * * 
W1(x ,f ) - c(t0Ht ^(a ) + c(t1)Ct f0(a ) 

- c(t0)c(t1)[c(t0) + cC^)]"
1 - h(a*) - v. 

Hence 

sup W (s.f*) - W (x*.f*) - v, 
8€S J" 

which together with (20) proves that  (x ,f )  is an equilibrium 

point yielding minimax payoffs. 
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Finally it is easy Co see that no equilibrium point can 

yield payoff greater than mlnimax for either of the players since 

this would decrease the other player's payoff below his mlnimax 

value. Interchangebility is obvious. 

The last type of an Emission-Prediction game considered in 

this paper is the most general one and is obtained by further 

relaxing the restrictions on Predictor. 

(1) Emitter chooses a period t * 1,2,... and a periodic 

binary sequence with this period. 

(2) Predictor is allowed to observe as many digits of the 

sequence as he wishes and after he decides to cease 

observation he is required to predict the next digit. 

(3) The payoff to Emitter is zero if the prediction is 

correct and is equal to c. (t) 2 0 if the prediction 

is wrong and the sequence has period t. 

(4) The payoff to Predictor is zero if his prediction is 

wrong and is equal to c2(n) 2» 0 if it is correct 

and the length of the observed segment was n. 

i 

The constants cAt)    and c2(n) represent penalties for long 

periods and lengthy observation. We assume that 

t - 1,2,... -• 1 - c1(l) 2 c^t) 2 c1(t+l),  lim c1(t) • 0 

and 
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- 0,1,..,. ■• 1 - c2(0) i c2(n) i c2(iH-l)f  li» q.di) 
n-H» 

0i 

We will denote the resulting nonzero-sum game by GCc.Ct), 

c2(h)). ( .   ' 

<     The space S of Emitter's pure strategies in this game is 

same as before. Predictor's pure strategies ^ € ¥ ate pairs 

i I 

(       ' 

♦ - (B,*). 

where B is a finite set of finite strings of zeros and ones 

such that for every w 6 fl there is some b € B which is an 

Initial segment of u. ^ is a mapping from B into {0,1}. 

Clearly, the set Y of all Predictor's pure strategies is now 

countably infinite. 
i j 

i 

Let s - (t,st), ^ - (B,*), w » s , b € B be the 

initial segment of, w, and let n be the length of b. The 

payoffs are now given by: > 

cAt)    if (Kb) >* w. (cl™   if ♦(b)/Vi' 
W1(8,^) - / 

V0 '   if ♦(b) - a)n+1. 

W2(8.i|») 

/c2(n) if Hh)  -to^, 

U,    if ♦(b) j* w'  . 

i   i 
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Proposition 5.2: The gase G(c.(t)fc2(n)) has an equilibrium 

point. 

Proof: Let for j - 1,2 

p .(s.s*) - 8up|W.(8,i|>) - W (s'.*)! and 
J»1      $&    J       J 

04 9(♦.♦,) - 8up|w (a.*) - W (s.^)! 

be Weld's (pseudo) metrics [8] on S and \\)   respectively. Let 

e > 0 and 

Se - {(t.st) € S : c^t) i|}f 

♦e - {(B,*) € H» : c2(|B|) i|}. 

where  |B|  Is the length of the longest string b € B. Since 

11m c. (t) - 11m c.(n) ■ 0 the finite sets S  and i|«  are 

e-nets In the (pseudo) metric spaces (Stp..) and (^»p,^) 

respectively and hence these spaces are totally bounded ("condi- 

tionally compact" In Weld's terminology). By [8], Theorem 2.1, 

so are then the spaces (Sfp.») and (IKP?])* 
Let» ^or ^ " 1»2»...| 

(xT.y,) be an equilibrium point In the finite game ^S-.. »ip.,. »W^W.), 

*  * 
Then there Is a subsequence (x. ,y, ), 1 M 1,2,..«, and a pair 

1  i 
*     * 

of mixed strategies x C X, y € Y such that as 1 -*■ *, J - 1,2, 

*  * *  * 
p. . (x, ,x ) -»• 0 and p. 9(y, ,y ) -► 0. In particular this 

Implies, as 1 -► «, 
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lwi(xk 'yk ) ' Vx*»y*>l -0» <21) 

I sup W (x,y*) - sup W (x,y*)| -► 0, (22) 
x€X1/ki X6X 

|sup W (s.y* ) - sup W (x.y*)| -► 0.        (23) 

Finally, since (x. ,y. ) is an equilibrium point in G, 
ic1 ic1 ici 

sup W (x,y ) - W (x, ty ) 

^l/k/   ^      ^ ^ 

whence letting i -»• » in (21) through (23) we obtain 

sup W^x.y ) - W^x ,y ). 
x€X x        1 

Similarly, 

sup W9(x .y) - W,(x ,y ), 
y€Y Z 

* *. 
so that  (x ,y ) is an equilibrium point in G(c1(t),c2(n)) and 

the proposition is proved. 

Remark: We suspect that much stronger statements, namely that 

all equilibrium points are equivalent and interchangeable, can 

be proved, but we have not been able to prove this. 
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It(«l) 

12 3 4 5 

It(aO) 

12 3 4 5 

f*(a) - (fj(a).£*(a)) 

Case 1 Case 2 Case 3 Case 4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 0 0 0 

0 0 0 1 

0 0 10 

0 0 11 

0 10 0 

0 10 1 

0 110 

0 111 

10 0 0 

10 0 1 

10 10 

10 11 

110 0 

110 1 

1110 

1111 

0 0 0 0 

0 0 0 1 

0 0 10 

0 0 11 

0 10 0 

0 10 1 

0 110 

0 111 

10 0 0 

10 0 1 

10 10 

10 11 

110 0 

110 1 

1110 

1111 

(1,0) 

(0.1) 

(1.0) 

arbitrary 

(1,0) 

(0,1) 

(1.0) 

arbitrary 

(1,0) 

arbitrary 

(1,0) 

(0.1) 

arbitrary 

(0.1) 

arbitrary 

(0.1) 

(1,0) 

(0.1) 

arbitrary 

1 (0.1) 

(1.0) 

(0.1) 

(1.0) 

(0,1 

(i.o 

(0.1 

(1.0 

(0.1 

(1.0 

(0.1 

(1,0 

(0.1 

(1,0 

(0,1 

(1,0 

(0,1 

(1,0 

(0,1 

(1,0 

(0.1) 

k(l,0) 

\ 

(0.1) 

(1.0) 

(1.0) 

K2*2} 

(1.0) 

KV2) 

(1.0) 

K2t2) 

(1.0) 

(1.0) 

(0.1) 

K2t2) 

(0.1) 

K2*2) 

(0.1) 

K2*2) 

(0.1) 

K2>2) 

(0.1) 

K2t2) 

(0.1) 

TABLE 1. 
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